If F is Continuous on 2 2
Abstract
Let D be a dendrite and f be a continuous map on D. Denote by R(f), Ω(f) and ω(x, f) the set of recurrent points, the set of non-wandering points and the set of ω-limit points of x under f, respectively. Write \({\Omega _{k + 1}}\left( f \right) = \Omega \left( {f\left| {_{{\Omega _k}\left( f \right)}} \right.} \right)\) and \({\omega ^{k + 1}}\left( f \right) = \bigcup\nolimits_{x \in {\omega ^k}\left( f \right)} {\omega \left( {x,f} \right)} \) for any positive integer k, where Ω1(f) = Ω(f) and \(\omega \left( f \right) = \bigcup\nolimits_{x \in D} {\omega \left( {x,f} \right)} \). ω m (f) is called the attracting centre of f if ω m+1(f)= ω m (f). In this paper, we show that if the rank of D is n − 1, then we have the following results: (1) ω n+2(f) = ω n+1(f) and the attracting centre of f is ω n+1(f); (2) \({\Omega _{n + 2}}\left( f \right) = \overline {R\left( f \right)} \) and the depth of f is at most n + 2. Further, if the set of (n − 1)-order accumulation points of Br(D) (the set of branch points of D) is a singleton, then \({\Omega _{n + 1}}\left( f \right) = \overline {R\left( f \right)} \) and the depth of f is at most n + 1. Besides, we show that there exist a dendrite D 1 whose rank is n − 1 and the set of (n − 1)-order accumulation points of Br(D 1) is a singleton, and a continuous map g on D 1 such that ω n+1(g) ≠ ω n (g) and \({\Omega _n}\left( f \right) \ne \overline {R\left( f \right)} \).
Access options
Buy single article
Instant access to the full article PDF.
39,95 €
Price includes VAT (Indonesia)
References
-
Acosta, G., Eslami, P.: On open maps between dendrites. Houston J. Math., 33, 753–770 (2007)
-
Baldwin, S.: Continuous itinerary functions and dendrite maps. Topology Appl., 154, 2889–2938 (2007)
-
Balibrea, F., Hric, R., Snoha, L.: Minimal sets on graphs and dendrites. Internat. J. Bifurcation and Chaos, 13, 1721–1725 (2003)
-
Block, L., Coppel, W.: Dynamics in One Dimension, Springer-Verlag, New York, 1992
-
Coven, E. M., Hedlund, G. A.: \(\overline P = \overline R \) for maps of the interval. Proc. Amer. Math. Soc., 79, 316–318 (1980)
-
Efremova, L. S., Makhrova, E. N.: The dynamics of monotone maps of dendrites. Sb. Math., 192, 807–821 (2001)
-
Efremova, L. S., Makhrova, E. N.: On the center of continuous maps of dendrites. J. Difference Equ. Appl., 9, 381–392 (2003)
-
Kato, H.: A note on periodic points and recurrent points of maps of dendrites. Bull. Austral. Math. Soc., 51, 459–461 (1995)
-
Mai, J., Shi, E.: \(\overline R = \overline P \) for maps of dendrites X with Card(End(X)) < c. Internat. J. Bifur. Chaos, 50, 1808–1814 (2007)
-
Mai, J., Sun, T.: Non-wandering points and the depth for graph maps. Sci. China Ser. A, 19, 1391–1396 (2009)
-
Nadler, S. B. Jr.: Continuum Theory: An Introduction, Marcel Dekker, Inc., NY, 1992
-
Naghmouchi, I.: Dynamical properties of monotone dendrite maps. Topology Appl., 159, 144–149 (2012)
-
Naghmouchi, I.: Pointwise-recurrent dendrite maps. Ergodic Theory Dynam. Systems, 33, 1115–1123 (2013)
-
Su, G., Sun, T., Li, L., et al.: The centre and the depth of the centre for continuous maps on dendrites with unique branch point. Topology Appl., 282, 107314 (2020)
-
Su, G., Sun, T., Zeng, F., et al.: The depths and the attracting centres for continuous maps on local dendrites with the number of branch points being finite. Topology Appl., 272, 107067 (2020)
-
Sun, T.: The set of unilateral γ-limit points and the topological entropy of a tree map (Chinese). Adv. Math. (China), 33(1), 57–66 (2004)
-
Sun, T., Su, G., Qin, B.: The depths of the centres and the attracting centres of a class of dendrite maps. J. Math. Anal. Appl., 479, 1158–1171 (2019)
-
Sun, T., Xi, H.: The centre and the depth of the centre for continuous maps on dendrites with finite branch points. Qual. Theory Dyn. Syst., 16, 697–702 (2017)
-
Sun, T., Xi, H., Chen, Z., et al.: The attracting centre and the topological entropy of a graph map (Chinese). Adv. Math. (China), 33(5), 540–546 (2004)
-
Sun, T., Zeng, F., Qin, B., et al.: The attracting centre and space of Ω-limit sets of a general tree map (Chinese). Sci. Sin. Math., 48, 1131–1142 (2018)
-
Xiong, J.: The attracting centre of a continuous self-map of the interval. Ergodic Theory Dynam. Systems, 8, 205–213 (1988)
Acknowledgements
We thank the referees for their careful reading of the manuscript and constructive comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported NSF of Guangxi (Grant Nos. 2022GXNSFAA035552, 2020GXNSFAA297010) and PYMRBAP for Guangxi CU (Grant No. 2021KY0651)
Rights and permissions
About this article
Cite this article
Su, G.W., Han, C.H., Sun, T.X. et al. The Depths and the Attracting Centres for Continuous Maps on a Dendrite Whose Rank is Finite. Acta. Math. Sin.-English Ser. 38, 1643–1652 (2022). https://doi.org/10.1007/s10114-022-0564-1
-
Received:
-
Revised:
-
Accepted:
-
Published:
-
Issue Date:
-
DOI : https://doi.org/10.1007/s10114-022-0564-1
Keywords
- Dendrite
- attracting centre
- depth
MR(2010) Subject Classification
- 37E25
- 37B40
- 54H20
Source: https://link.springer.com/article/10.1007/s10114-022-0564-1
0 Response to "If F is Continuous on 2 2"
Post a Comment