If F is Continuous on 2 2

Abstract

Let D be a dendrite and f be a continuous map on D. Denote by R(f), Ω(f) and ω(x, f) the set of recurrent points, the set of non-wandering points and the set of ω-limit points of x under f, respectively. Write \({\Omega _{k + 1}}\left( f \right) = \Omega \left( {f\left| {_{{\Omega _k}\left( f \right)}} \right.} \right)\) and \({\omega ^{k + 1}}\left( f \right) = \bigcup\nolimits_{x \in {\omega ^k}\left( f \right)} {\omega \left( {x,f} \right)} \) for any positive integer k, where Ω1(f) = Ω(f) and \(\omega \left( f \right) = \bigcup\nolimits_{x \in D} {\omega \left( {x,f} \right)} \). ω m (f) is called the attracting centre of f if ω m+1(f)= ω m (f). In this paper, we show that if the rank of D is n − 1, then we have the following results: (1) ω n+2(f) = ω n+1(f) and the attracting centre of f is ω n+1(f); (2) \({\Omega _{n + 2}}\left( f \right) = \overline {R\left( f \right)} \) and the depth of f is at most n + 2. Further, if the set of (n − 1)-order accumulation points of Br(D) (the set of branch points of D) is a singleton, then \({\Omega _{n + 1}}\left( f \right) = \overline {R\left( f \right)} \) and the depth of f is at most n + 1. Besides, we show that there exist a dendrite D 1 whose rank is n − 1 and the set of (n − 1)-order accumulation points of Br(D 1) is a singleton, and a continuous map g on D 1 such that ω n+1(g) ≠ ω n (g) and \({\Omega _n}\left( f \right) \ne \overline {R\left( f \right)} \).

Access options

Buy single article

Instant access to the full article PDF.

39,95 €

Price includes VAT (Indonesia)

References

  1. Acosta, G., Eslami, P.: On open maps between dendrites. Houston J. Math., 33, 753–770 (2007)

    MathSciNet  MATH  Google Scholar

  2. Baldwin, S.: Continuous itinerary functions and dendrite maps. Topology Appl., 154, 2889–2938 (2007)

    MathSciNet  Article  Google Scholar

  3. Balibrea, F., Hric, R., Snoha, L.: Minimal sets on graphs and dendrites. Internat. J. Bifurcation and Chaos, 13, 1721–1725 (2003)

    MathSciNet  Article  Google Scholar

  4. Block, L., Coppel, W.: Dynamics in One Dimension, Springer-Verlag, New York, 1992

    Book  Google Scholar

  5. Coven, E. M., Hedlund, G. A.: \(\overline P = \overline R \) for maps of the interval. Proc. Amer. Math. Soc., 79, 316–318 (1980)

    MathSciNet  MATH  Google Scholar

  6. Efremova, L. S., Makhrova, E. N.: The dynamics of monotone maps of dendrites. Sb. Math., 192, 807–821 (2001)

    MathSciNet  Article  Google Scholar

  7. Efremova, L. S., Makhrova, E. N.: On the center of continuous maps of dendrites. J. Difference Equ. Appl., 9, 381–392 (2003)

    MathSciNet  Article  Google Scholar

  8. Kato, H.: A note on periodic points and recurrent points of maps of dendrites. Bull. Austral. Math. Soc., 51, 459–461 (1995)

    MathSciNet  Article  Google Scholar

  9. Mai, J., Shi, E.: \(\overline R = \overline P \) for maps of dendrites X with Card(End(X)) < c. Internat. J. Bifur. Chaos, 50, 1808–1814 (2007)

    Google Scholar

  10. Mai, J., Sun, T.: Non-wandering points and the depth for graph maps. Sci. China Ser. A, 19, 1391–1396 (2009)

    Google Scholar

  11. Nadler, S. B. Jr.: Continuum Theory: An Introduction, Marcel Dekker, Inc., NY, 1992

    MATH  Google Scholar

  12. Naghmouchi, I.: Dynamical properties of monotone dendrite maps. Topology Appl., 159, 144–149 (2012)

    MathSciNet  Article  Google Scholar

  13. Naghmouchi, I.: Pointwise-recurrent dendrite maps. Ergodic Theory Dynam. Systems, 33, 1115–1123 (2013)

    MathSciNet  Article  Google Scholar

  14. Su, G., Sun, T., Li, L., et al.: The centre and the depth of the centre for continuous maps on dendrites with unique branch point. Topology Appl., 282, 107314 (2020)

    MathSciNet  Article  Google Scholar

  15. Su, G., Sun, T., Zeng, F., et al.: The depths and the attracting centres for continuous maps on local dendrites with the number of branch points being finite. Topology Appl., 272, 107067 (2020)

    MathSciNet  Article  Google Scholar

  16. Sun, T.: The set of unilateral γ-limit points and the topological entropy of a tree map (Chinese). Adv. Math. (China), 33(1), 57–66 (2004)

    MathSciNet  Google Scholar

  17. Sun, T., Su, G., Qin, B.: The depths of the centres and the attracting centres of a class of dendrite maps. J. Math. Anal. Appl., 479, 1158–1171 (2019)

    MathSciNet  Article  Google Scholar

  18. Sun, T., Xi, H.: The centre and the depth of the centre for continuous maps on dendrites with finite branch points. Qual. Theory Dyn. Syst., 16, 697–702 (2017)

    MathSciNet  Article  Google Scholar

  19. Sun, T., Xi, H., Chen, Z., et al.: The attracting centre and the topological entropy of a graph map (Chinese). Adv. Math. (China), 33(5), 540–546 (2004)

    MathSciNet  MATH  Google Scholar

  20. Sun, T., Zeng, F., Qin, B., et al.: The attracting centre and space of Ω-limit sets of a general tree map (Chinese). Sci. Sin. Math., 48, 1131–1142 (2018)

    Article  Google Scholar

  21. Xiong, J.: The attracting centre of a continuous self-map of the interval. Ergodic Theory Dynam. Systems, 8, 205–213 (1988)

    MathSciNet  Article  Google Scholar

Download references

Acknowledgements

We thank the referees for their careful reading of the manuscript and constructive comments and suggestions.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Cai Hong Han.

Additional information

Supported NSF of Guangxi (Grant Nos. 2022GXNSFAA035552, 2020GXNSFAA297010) and PYMRBAP for Guangxi CU (Grant No. 2021KY0651)

Rights and permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, G.W., Han, C.H., Sun, T.X. et al. The Depths and the Attracting Centres for Continuous Maps on a Dendrite Whose Rank is Finite. Acta. Math. Sin.-English Ser. 38, 1643–1652 (2022). https://doi.org/10.1007/s10114-022-0564-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s10114-022-0564-1

Keywords

  • Dendrite
  • attracting centre
  • depth

MR(2010) Subject Classification

  • 37E25
  • 37B40
  • 54H20

sanchezandinds.blogspot.com

Source: https://link.springer.com/article/10.1007/s10114-022-0564-1

0 Response to "If F is Continuous on 2 2"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel